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Abstract
The origin of power-law distributions in self-organized criticality is investigated
by treating the variation of the number of active sites in the system as a stochastic
process. An avalanche is then regarded as a first-return random-walk process
in a one-dimensional lattice. Power-law distributions of the lifetime and spatial
size are found when the random walk is unbiased with equal probability to
move in opposite directions. This shows that power-law distributions in self-
organized criticality may be caused by the balance of competitive interactions.
At the mean time, the mean spatial size for avalanches with the same lifetime
is found to increase in a power law with the lifetime.

PACS numbers: 05.65.+b, 89.75.Da

Power-law distributions are found in a variety of studies from the populations in cities all over
the world, word frequencies in literature [1], the strength of earthquakes [2], the wealth of
individuals [3], the forest fire [4], distinction of biological species [5], to web site pages, etc
[6]. Though the power-law distributions seem to be ubiquitous, the dynamical origin of them
has not been very clear up to now. Seventeen years ago, Bak and co-workers studied a sandpile
model [7] and found power-law distributions for the size and lifetime of avalanches when the
system is in a self-organized critical state. Further studies [8, 9] on self-organized critical
systems show that the power laws of the spatial and temporal sizes are fingerprints of the
self-organized criticality (SOC). Although different authors claimed power-law distributions
in different studies, the microscopic criterion for the onset of SOC and the appearance of
power-law distributions is still lacking.

In this letter, we focus our attention on the common features in all SOC models and try
to find out the origin of the power laws associated with different SOC states. The observation
in this letter is that the dynamics of a SOC system, no matter whether it is deterministic or
random, can be described by the variation of the number of some kind of active sites. Here,
an active site can be a site with local slope larger than the threshold in the sandpile model [7],
or a site with fitness smaller than the gap in the Bak–Sneppen (BS) model [10], etc. In the
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evolution of the specified system the number of active sites can increase or decrease according
to specific dynamical rules of the model. For most known SOC models, the probability for the
system to have a large number of active sites increases with the evolution of the system. To
see this, one can consider the BS model as an example. In the early updates, because the gap is
small, the newly updated (uniformly distributed) random fitness on the involved sites is more
likely to be larger than the gap. The tendency to decrease the number of active sites dominates.
Therefore, the probability for the system having a large number of active sites is small, and
the mean lifetime of the so-called f0-avalanches [11] is also small for small f0. When the
system’s gap becomes larger and larger, the system can increase the number of active sites
with larger and larger probability, and the mean lifetime of f0-avalanches becomes longer
and longer. When the mean lifetime turns out to be infinity, the system reaches a stationary
state—the critical state. Similar statements can be made for the sandpile model. One can
see that, on the variation of the number of active sites, there are two opposite trends in the
interactions in the system for different SOC models. One trend is to increase the number of
active sites, due to the increase of the gap in the BS model, or due to adding a grain of sand to
the system in the sandpile model or toppling grains to nearby sites at the threshold. The other
is to decrease the number, due to the larger updated fitness in the BS model or redistributing
the grains to nearby sites far below the threshold in the sandpile model.

From the above discussions one can guess that the power-law distributions associated
with the critical state may result from the balance of the two competitive trends. To confirm
this guess, one can focus on the variation of the number of active sites in the model. In fact,
an avalanche can be defined as a process from a state with at least one active site to one
without active site. Although different models have different rules for the evolutions or the
fluctuation behaviour of the active sites, the emergence of power-law distributions seems to be
independent of the dynamical detail. Here, we can consider the simplest trivial ‘dynamical’
rules by treating the variation of the number of active sites as a biased random walk in a
one-dimensional discrete lattice. Similar stochastic description has been used in other SOC
models [12, 13]. Our description is different from the mean-field approach [12] in that we
do not assume independent evolution for each site. In fact, we will not assume any specific
evolution rule for each site. Rather, we focus on the evolution of the total number of active
sites. In this letter, the distance from the origin is regarded as the number of active sites of
the system. Initially, the system has no active sites; the walker is at the origin. In each update
the system may gain one active site (the random walker moves right) with probability f0 or
lose one active site (the walker moves left) with probability 1−f0. If after an update the walker
returns to the origin for the first time, an avalanche is over with the number of steps defined as
its lifetime and the maximum distance from the origin as its spatial size. Then one can obtain
the distributions of the lifetime and the spatial size of avalanches from analytical calculation
and simple computer simulations for each fixed f0. We would like to investigate whether
the random-walk mechanism can give rise to the power-law distributions. Even without any
calculation one can see easily from the random-walk-based definition of the avalanche that
the probability of having a long lifetime avalanche is extremely small if f0 is very small and
that there is a considerably nonzero probability for an avalanche having infinite lifetime if
f0 is large enough. Therefore, one cannot expect power-law distribution for the lifetime of
avalanches if f0 is either too small or too large. The possible power-law distribution can
be seen only for f0 close to 0.5. It is our task in this letter to see whether some power-law
behaviours can be observed at some specific f0 = fC and to find the value of fC if it is
unique.

Due to the setting of our problem, the walker can return to the starting point only after
even steps. Let Q(T ) be the probability for the walker to return to the starting point after 2T
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Figure 1. Lifetime distribution calculated from equation (2). The distribution is normalized to 1.
The slope of the linear fit in log–log plot is −1.55 for the case with f0 = 0.5, in agreement with
analytical result in [14].

steps. It can be easily seen that

Q(T ) =
(

2T

T

)
(f0(1 − f0))

T . (1)

Q(T ) above contains contributions from two or more first-return smaller processes. Denote
the probability for an avalanche to have lifetime 2T by P(T ). It is obvious that P(T ) is equal
to the probability for the walker to return to the starting point for the first time in 2T steps.
By decomposing the whole (big) return process into a first-return process and a subsequent
(smaller) normal return process, we can write P(T ) in terms of Q(T ) as

P(T ) = Q(T ) −
T −1∑
j=1

P(j)Q(T − j). (2)

From this relation, the first-return probability P(T ) can be calculated. The calculated (after
normalization) lifetime distribution P(T ) is shown in figure 1 for f0 = 0.3, 0.4, 0.5. In the
same figure, results from Monte Carlo simulation of the random walk are also presented with
the same f0s. Excellent agreement can be seen between results from theoretical calculation
and Monte Carlo simulations, as it should. For the cases with f0 = 0.3 and 0.4 the distributions
are more likely to be an exponential form. At f0 = 0.5 all points except for T = 1 lie on
a straight line in the double-log plot. Therefore, a power-law distribution of the lifetime of
avalanches is found for f0 = fC = 0.5. For this special case, analytical expressions for both
P(T ) and Q(T ) exist [14, 15]. For T → ∞ the exponent for P(T ) is −1.5.

To get the distribution of the number of distinct sites visited by the random walker,
one needs to know the conditional probability P(S|T ) for the walker visiting S different
sites in 2T steps. The investigation based on this conditional probability is called the
run time statistics by some authors [16]. It is obvious that P(1|T ) = δ1T . First of all,
every path the walker moves along in the first-return problem has equal probability, since
the walker moves forward T steps and backward also T steps. The probability for the
occurrence of each such path is therefore (f0(1 − f0))

T . Thus, the conditional probability
P(S|T ) must be proportional to the number N(S, T ) of different paths the walker can
move in 2T steps when the furthest visited site is S. Secondly, one can see that every
path starting from and returning back to the origin can be decomposed into a large loop,
0 → 1 → 2 → · · · → S − 1 → S → S − 1 → · · · → 2 → 1 → 0, and some smaller loops
nested on the large loop. Those small loops must not involve the origin, otherwise the walker
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Figure 2. Spatial size distribution for first-return random-walk problem. Symbols are from Monte
Carlo simulation, and the solid curves are from analytical calculation. The slope of a linear fit in
log–log plot for the case with f0 = 0.5 is −1.94.

has returned to the starting point. The big loop costs 2S steps. If every small loop involves
only two sites, loop i → i + 1 → i for example, there are T − S such two-site loops, and each
loop can start from site i = 1, 2, . . . , S − 1. There may have some loops involving more than
two sites, i → i + 1 → i + 2 → i + 1 → i for example. This loop takes four steps. If these
four steps are used to have two smallest loops among the three sites, there are three different
partitions of the two two-site loops. Similarly, a four-site loop can correspond to 10 partitions
of three two-site loops. If we neglect the small contributions from partitions with more than
one three- (or more) site loops, the total number of partitions is proportional to that with only
two-site loops, and the proportional factor will be cancelled in the final result (equation (5)) for
P(S|T ). So, in the following, we only consider two-site loops. When counting the number of
different partitions of two-site loops, one needs to be careful to distinguish loops at the same
position but at different moments. Since only two-site loops are considered, the location of
later loops has a certain constraint. If the loops appear before the furthest site S is reached,
the first loop can start at site i1 = 1, 2, . . . , S − 1, but the second loops can start only at a site
i2 = i1, i1 + 1, . . . , S − 1. Because of this constraint, the number of different partition of r
loops is

M(S, r) =
(

r + S − 2
r

)
. (3)

Similarly, one can get the number of partitions of T − S − r after-site S-loops. Therefore,

N(S, T ) =
T −S∑
r=0

M(S, r)M(S, T − S − r). (4)

For large S and T this is a very large number. So the numerical calculation of N(S, T )

can be done only for small S and Ts. Theoretically,

P(S|T ) = N(S, T )
/ T∑

S=2

N(S, T ). (5)

With P(S|T ) the distribution of sites visited by the walker in the first-return problem is

P(S) =
∑
T

P (S|T )P (T ). (6)

The calculated distribution P(S) is shown in figure 2 for S up to 12. Shown in the same
figure are results from the Monte Carlo simulations for this problem. Theoretical calculations
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agree with the Monte Carlo results very well. Once again, a power-law distribution is seen for
the case with f0 = fC = 0.5 for a wide range of S. So, power-law distributions for the lifetime
and spatial size of avalanches can be obtained when the two competition trends balance each
other.

In [3] the distribution of the wealth of individuals is investigated in terms of stochastic
processes. There the authors claimed that the power-law distribution can be obtained if one
assumes that the relative return of each agent is statistically equivalent. This equivalence is
taken as a sign of market efficiency and is compared to the Boltzmann distribution in normal
statistical systems where some balance is natural and necessary at the equilibrium state. In
this letter, we see some balance is also needed for the appearance of a power-law distribution.

It can be mentioned here that the balance of opposite trends is also of necessity in normal
phase transition. Consider the well-known Ising model for example. There are also two
competitive trends in the system. If there were no thermal fluctuations, all spins would align
in the same direction, because that configuration has the minimum energy. The thermal motion
will destroy the parallel alignment of the spins. In the low-temperature region, the fluctuations
are very weak, and the system is in the ferromagnetic state. At high temperatures, the thermal
fluctuations dominate, and the system is in the paramagnetic state. When the two trends
balance, the system is at the critical point. In the region close to a critical point, power-law
behaviours have been observed experimentally.

From above, it is clear that power-law spatial and temporal distributions can be observed
when the two competitive interactions balance. This conforms the conjecture proposed in this
letter and gives the critical value fC = 0.5. More interestingly, the exponents obtained from
the first-return random-walk problem are quite close to the ones obtained in other models.
This may also indicate that the variation of active sites in different SOC models can be well
approximated by a purely stochastic process.

In fact, one can learn more from such study. One may have noted that the conditional
probability P(S|T ) is universal, independent of f0. From equation (5) one can see that there
exists a correlation between T and S. For larger lifetime 2T it is more likely for the avalanche
having bigger spatial size S. In fact, the most probable spatial size S is about T/2 for avalanches
of fixed lifetime 2T . Quantitatively, one can calculate the mean spatial size for avalanches
with fixed T from equation (5)

〈S〉 =
∑

S

S P (S|T ). (7)

Though we cannot perform analytical or numerical calculation of 〈S〉 for large T, Monte Carlo
simulation can be used for this purpose. The relation between 〈S〉 and T is shown in figure 3.
A power-law relation can be seen in a very wide range of T from 2 to 100.

It is interesting to note that the average distinct sites visited in 2T steps in conventional
random walk is 〈S〉 ∼ (16T/π)0.5 for T → ∞. In this letter, only those 2T from 2 to 1000 are
considered. From figure 3 one can see that the points from Monte Carlo simulation are below
the linearly fitted curve for large T. In fact, if one does a linear fit for those points with T > 200
the slope is less than 0.5. This is understandable, because in the conventional random-walk
problem the walker may move forward and never return, thus visiting more distinct sites than
obtained in this letter.

Finally, we would like to point out that the values of the exponents for the distributions
depend on the dynamical details of the model. But a necessary zero driving rate at the self-
organized critical point implies some balance between the competitive trends. Therefore,
we conclude that in all SOC models power-law distributions result from the balance of two
competitive trends.
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Figure 3. Relation between mean spatial size 〈S〉 and the temporal size T from Monte Carlo
simulation. The slope of the linear fit to those points for T = 2–300 in log–log plot is 0.537.

As a summary, we studied avalanche dynamics with analytical calculation and Monte
Carlo simulation by treating the variation of the number of active site in the system as a
discrete random process with probability f0 to increase by 1 and 1 − f0 to decrease by 1. An
avalanche is defined as a first-return random-walk process. The number of steps of the process
is defined as its lifetime of the avalanche, and the number of different sites the walker has visited
is called the spatial size of the avalanche. Power-law distributions for the temporal and spatial
sizes are found f0 = 0.5. This indicates that power-law distributions in self-organized critical
systems result from the balance of two competitive trends. The self-organization of the system
to the critical state is a process to adjust the relative strength of the two competitive trends in
specific way to enable them to balance at last. This conclusion may serve as a microscopic
criterion for the onset of self-organized criticality in natural systems. The correlation between
the spatial and temporal sizes of avalanches is also investigated, and a power-law dependence
of the mean spatial size on the temporal size is shown.
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